
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 939–951 (1997)

IMPLEMENTATION OF VORTEX FILAMENT METHODS ON
PARALLEL MACHINES WITH DISTRIBUTED ADAPTIVE DATA

STRUCTURE

Y. L. SHIEH,1 J. K. LEE,1 J. H. TSAI2 AND C. A. LIN2*
1 Department of Computer Science, National Tsing Hua University, Hsinchu 30043, Taiwan

2 Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan

SUMMARY

This paper addressed the implementation of vortex filament methods on parallel machines with distributed
memory to simulate a three-dimensionally evolving jet. Vortical structure developments due to Kelvin–
Helmholtz instability of the axially perturbed jet are also examined. The implementation is conducted in a single-
programme multiple-data (SPMD) environment and the parallelism is focused on issues of data distribution,
efficient support of parallel I=O and overlapping of communications with computations. In addition, since the
number of segment markers in a filament is dynamically growing according to the requirement of numerical
accuracy, a novel packet-oriented data structure is proposed not only to partition filament segment markers
among distributed processors but also to support dynamical load balancing at run time. This work is the first to
apply packet-oriented structures to implement a parallel vortex filament method. Experimental results indicate
performance improvement from 1�5 to 2�6 times over static schemes on nCUBE2, DEC Alpha and IBM SP2 by
incorporating the proposed scheme with packet-oriented structures.# 1997 by John Wiley & Sons, Ltd. Int. j.
numer. methods fluids 24: 939–951, 1997.

(No. of Figures: 18. No. of Tables: 4. No. of Refs: 10.)

KEY WORDS: vortex filament method; parallel machines

1. INTRODUCTION

Jet flow involves various flow motions, Kelvin–Helmholtz instability, roll-up, pairing and ultimately
breakdown.1 As the jet flow injects into the circumferential flow, the viscous effect induces a shear
layer to balance the velocity differences between the two flows. If the shear layer is thin enough, it
can be regarded as a vortex sheet. Subjected to some wavy perturbations in the streamwise direction,
Kelvin–Helmholtz instability is sequentially excited. Kelvin–Helmholtz instability causes the
concentration of vorticity; thus the vortex sheet begins to roll up form vortex rings. The concentrated
vortices induce velocity fields to drive neighbouring ring-like structures together, which is called
pairing. If these rings are subjected to critical perturbations, they will be stretched until the ring
structures are broken by viscous effects.

The vortex method2,3 is widely used to simulate vortex-induced flow problems and is adopted here
to simulate the evolution of a three-dimensionally periodic jet under axial perturbations. The rationale

CCC 0271–2091/97/100939–13$17.50 Received November 1995
1997 by John Wiley & Sons, Ltd. Revised August 1996

* Correspondence to C. A. Lin, Department of Power Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan.

Contract grant sponsor: National Science Council of Taiwan; Contract grant number: NSC-85-2212-E-007-057

behind the usage of the vortex filament method is the fact that the method is Lagrange-based and
mainly concerns the concentrated vorticity in a flow field, so that the vortical structures can be easily
traced during the evolution. If a Euler-based method is used, there may be too many grid points
located in the regions where the vorticity is nearly zero. Although the method can keep track of the
vortical structures, it becomes inefficient when those structures are destroyed. However, the vortex
filament method is grid-free and hence does not introduce the types of diffusive errors which arise
from the grid mesh in finite difference schemes.

Despite its appealing feature of being able to track the movements of an individual vortex, the
vortex method is a computationally intensive scheme. Basically, each point vortex velocity is
induced, through the Biot–Savart law, by all the surrounding vortices. The global interactions of all
point vortices, a typicalN-body problem with an operation cost proportional toN�N ÿ 1�, make it a
good candidate for computations on parallel computers.4–6

When a vortex filament is severely stretched by Kelvin–Helmholtz instability excitation, to the
extent that the segment is unable to resolve the curvature of the filament, the segment is bisected into
two segments.7 Therefore the number of segments, hence segment markets, in a filament is adaptive
and is dynamically growing according to the requirement of numerical accuracy in order to simulate
the physical environment. This adaptive data structure imposes load imbalance in simulating the flow
on parallel machines if a static partition method is employed.

The present parallelization of the vortex filament method is designed in the native SPMD C
environment and emphasis is on data distribution schemes, efficient support of parallel I=O and
overlapping of communications with computations. For the static data structure a ‘block’ partitioning
scheme is adopted. However, for the adaptive data structure, owing to the excessive stretching of
vortex filaments, a novel packet-oriented technique of filament segment data distribution within
computations is proposed to achieve good performance for this problem.

2. VORTEX FILAMENT METHOD

2.1. Computational formulation

The flow motion of an incompressible, inviscid fluid can be described by

@O

@t
� �V � H�O � �O � H�V ; �1�

whereO andV represent vorticity and velocity respectively.
The vortex filament method approximates the vorticity field by numerous vortex filaments with an

assumed vorticity distribution around the filament centrelines. The velocity, based on the Biot–Savart
law, is calculated by filaments of finite core radius, as suggested by Leonard,2 as

V �
PN

i�1

PMi

j�1
GiKs�X ÿ Xi; j�dli; j; �2�

with

Ks�X � � ÿ
1

4pjX j3
f

X

s

� � 0 x3 ÿx2

ÿx3 0 x1

x2 ÿx1 0

0

@

1

A; f �r� �
r3

r2 � a3=2
;

whereN is the number of vortex filaments,M is the number of segment markers per filament,X is the
location of a segment marker,Gi is the circulation,dl is the length of a segment,s is the filament
radius anda is a numerical parameter depending on the vorticity distribution of the vortex core. In

940 Y. L. SHIEH ET AL.

INT. J. NUMER. METHODS FLUIDS, VOL.24: 939–951 (1997) # 1997 by John Wiley & Sons, Ltd.

this paper the vorticity distribution is assumed to be constant and Gaussian anda is selected to be
0�413.8

Spatial curve integration is performed by cutting each filament into many line segments which are
short enough to express the curvature of the filament. The length of each segment is represented by
dli; j � jXi; j�1 ÿ Xi; jj, whereXi; j indicates the adjoint segment marker between segments.

Trajectories of each adjoint segment marker can be obtained by integrating

dXi; j

dt
� V �Xi; j; t� �3�

with time. In the present methodology a second-order time scheme is used to move the adjoint
segment markerXi:

X *i; j � Xi; j�t� � V �Xi; j; t�Dt; �4�

Xi; j�t � Dt� � Xi; j�t� �
V �Xi; j; t� � V*�X *i; j; t�

2
Dt: �5�

Consequently, the stretching effect in the vorticity equation is then implied in

dli; j�t � Dt� � Xi; j�1�t � Dt� ÿ Xi; j�t � Dt�: �6�

When a vortex filament is severely stretched to the extent that the segment is unable to resolve the
curvature of the filament, the segment will be bisected into two segments. Here we follow the
algorithm by Kino and Ghoniem,7 where the segment is bisected equally when it is longer than the
longest segment at the initial time.

2.2. Numerical procedure

The data structures are composed of a group of filaments distributed throughout three-dimensional
space, with each filament consisting of a collection of segment markers. All the data (location,
velocity, etc.) in the filaments are stored in one-dimensional arrays, with pointers designed to locate
the beginning and end of each filament.

The solution procedure of the vortex filament method can be summarized as follows.

1. Set up initial conditionsXi; j andGi.
2. Calculate initial maximum segment lengthdlmax;initial.
3. Calculate velocity of segment marker,V �Xi; j; t�.
4. Calculate intermediate segment marker locationX *i; j.
5. Calculate velocity of segment marker,V*�X *i; j; t�.
6. Calculate segment marker locationXi; j�t � Dt�.
7. Calculate segment lengthdli; j�t � Dt�.
8. Check dli; j�t � Dt� > dlmax;initial. False: go to step 3. True: insert a new segment marker

betweenXi; j andXi; j�1; go to step 3.

3. PARALLEL ALGORITHM

In the present parallel implementation the single-programme multiple-data (SPMD) environment is
adopted. Therefore the key to multiple-CPU computations is the design of the data structure
distribution. For parallel computations the straightforward method is to partition and distribute the
group of filaments equally among processors, i.e. the static ‘block’ partitioning scheme. The data
distribution scheme is illustrated in Figure 1, which shows a system of six filaments distributed

VORTEX FILAMENT METHODS 941

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 931–951 (1997)

among four processors, each having 1�5 filaments. The serial version is also shown on the left of the
figure, indicating a non-partitioned data structure.

There are two problems with using the ‘block’ partitioning scheme to support the data structure in
the problem. Firstly the number of segment markers in the data structure may increase dynamically
and therefore data need to be inserted into the array. The ‘block’ array implementation requires all the
data following the insertion point to be moved back. Secondly, and most importantly, the irregular
growth of the segments results in load imbalance, so that the performance of the parallel programmes
deteriorates.

3.1. Adaptive data structure with load-balancing scheme

Figure 2 shows an instance of the data structure at a given time. It represents an irregular aggregate
structure with non-rectangular index sets. The number of rows of the structure corresponds to the
number of filaments in the physical domain. The length of each row is related to the number of
segment markers in a filament. Since the number of segment markers in a filament may increase

Figure 1. Global view of static ‘block’ partitioning scheme

Figure 2. Irregular aggregate structure with non-rectangular
index sets

Figure 3. Global view of packet-oriented partitioning
scheme

942 Y. L. SHIEH ET AL.

INT. J. NUMER. METHODS FLUIDS, VOL.24: 939–951 (1997) # 1997 by John Wiley & Sons, Ltd.

during run time, the static ‘block’ partitioning scheme can cause load imbalance in parallel
computations.

The load imbalance problem is solved by decomposing the data structure into a packet-oriented
parallel data structure as shown in Figure 3. The structure is designed to support dynamically growing
structures with non-rectangular index sets. In the scheme the filament is divided into a set of packets,
which are then distributed among processors, and the balance of the computation is controlled by the
number of packets in each processor. The data (segment markers) may grow according to the
requirement of numerical accuracy and, instead of being inserted into an array, the newly created
segment markers are actually put into the packet. The number of segment markers in a packet
increases and in the present construction the packet is automatically split if the number of data in the
packet is above a preset bound. Packets are moved around different processors to maintain the
balance of computational loads among processors. Figure 3 shows that in the global view each
processor possesses a portion of the filaments.

The structure is very much like a distributed array,9,10 except that it allows the size of the
distributed array to be increased and works comparably with a set of load-balancing algorithms.
Arrays are distributed among processors by decomposing into packets. When the imbalance begins,
the work load is rebalanced by dividing packets equally among processors at run time. To support the
abstract data structure, a set of operations for packets is constructed, as listed in Table I. AddPack and
DelPack control the caching of the remote data. SendPack and RecvPack transfer the packets between
different processors. IsPackStart and IsPackEnd are used to control the beginning and end of each
packet.

4. RESULTS AND DISCUSSION

4.1. Behaviour of three-dimensionally evolving jet

The primary vortical structure of the circular inviscid jet is observed to be dominated by
inviscidity. Spatial periodicity further simplifies the calculations of the jet development. The infinite
period was approximated with three upstream and downstream periods. The axial wavelength was
discretized into 39 filaments, each of which initially contained 90 segment markers. The radius of the
jet was taken to beR � 5 and a constant filament radiuss � 0�1R was adopted. The initial axial
perturbation was simulated by a sinusoidal variation in circulation: the undisturbed circulation is
G0 � 0�1;G � G0�1 � E sin�2pz=l��, wherel is the axial wavelength, chosen as 2p, andE � 0�05 is
the perturbation strength. The simulation time step was chosen to be 0�05 s.

Because of Kelvin–Hemlholtz instability, a wave distribition of vortex filaments was observed in
side view about 8 s after simulations started (Figure 4). This concentration of filaments indicates the
formation of a concentrated vorticity. It can also be observed that filaments behind the concentrated
zone have smaller radii than those ahead of it. This situation, known as leap-frogging, is observed
when two vortex rings proceed in the same direction with the front ring expanding and the rear one

Table I. Packet-related functions

GetPack(ArrayX,Index) Return the address of the packet containing the element of the index
IsPackEnd(ArrayX,Index) Given an index and decide if is is the end element of a packet
IsPackStart(ArrayX,Index) Given an index and decide if it is the starting element of a packet
SendPack(ArrayX,Index) Given an idex and send the packet to the processor who needs it
RecvPack(ArrayX,Index) Given an index and receive the packet from the processor
AddPack(ArrayX,PackY) Given a packet and add it to the ring
DelPack(ArrayX,PackY) Remove a packet from a ring

VORTEX FILAMENT METHODS 943

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 931–951 (1997)

contracting. This phenomenon is caused by the different directions of induced velocities, as the rear
part of the vortex ring experiences an induced velocity towards the centre while in the region ahead of
the ring the induced velocity is away from the centre. From the experience of a single vortex ring the
proceeding speed decelerates when the ring starts to expand and therefore the filaments behind the
concentrated filaments proceed faster than the preceding ones. Consequently, one observes that some
filaments originally neighbouring the concentrated filaments merge into and even precede the
concentrated ones.

As time proceeded, those concentrated filaments were perceived to revolve around each other
(Figure 5), a phenomenon similar to the vortex roll-up observed in mixing layers or shear layers.
Looking in the direction along the axis of the filament centre, all the filaments were found to be
circular, which was a consequence of no azimuthal perturbations being imposed on the filaments. As
a result, no vorticity was directed in the streamwise direction but only in the azimuthal direction.
From the stretching term in the vorticity equation one can infer that the vorticity field was stretched
azimuthally, though there is a velocity strain in the streamwise direction.

4.2. Parallelism performance results with static data structures

In the first experiment the set of filaments was statically partitioned among different processors.
This scheme works well with small circulation and in the initial stages when the number of segment
markers in each processor remains constant and is evenly distributed.

There are two more issues to be addressed for achieving good performance other than the data
distribution issue. Firstly, asynchronous message passing is needed to overlap communications with
computations. Communication and computation can be blocked intok stages and software pipes
messages one stage ahead of the computations. The idea is illustrated in Figure 6, wherek is the
number of stages of communications,ci is the communication time spent in theith stage andti is the
computation time spent in theith stage. The speed-up of overlapping is two if the communication and
computation times are the same, while there will be no speed-up if the amount of computation is far
greater than the communication time or if the communication time is far greater than the computation
time. In actual experiments the speed-up factor becomes more significant as the processor number
grows and the problem size becomes fine grain, so that the communication time gradually increases
to about the same as the computation time. The overlap speed-up factor then decreases, since the
granularity of the parallelism grows even smaller than the communication granularity as the
processor number grows even bigger.

In some applications the scientific data can be numerous and frequently have to be written out to be
visualized, e.g. the intermediate results for a transient problem; therefore efficient support for parallel
I=O operation is important. Figure 7 illustrates the time spent using both sequential and parallel I=O.
Time for the sequential version is measured using the accumulated time for all the processors

Figure 4. Vortex filament distribution (three periods) at 8 s Figure 5. Vortex filament distribution (three periods) at 16 s

944 Y. L. SHIEH ET AL.

INT. J. NUMER. METHODS FLUIDS, VOL.24: 939–951 (1997) # 1997 by John Wiley & Sons, Ltd.

performing I=O, i.e. sequentially. The parallel version is timed in the following way. Since the
segment markers are distributed among processors, the sizes of segment markers in the processors are
needed to serve as the file point offset when each processor needs to write data to a file. Then the
parallel I=O scheme supported by nCUBE2 is used to co-ordinate the concurrent I=O operations.
Although nCUBE2 supports parallel I=O logically, there are not as many physical I=O nodes as
processor nodes. Therefore the parallel I=O performance increases only slightly as the processor
number grows. It significantly outperforms sequential I=O, however.

The final performance with the static distribution scheme, which is computed on nCUBE2, is listed
in Table II. The parallel performance speeds up reasonably well and the best performance is with 32
filaments running on 128 processors, the speed-up being around 87�5 when compared with the one-
processor run. The ratios of communication time to computation time with 10 filaments using eight
and 16 processors are 15% and 35% respectively. Figures 8 and 9 illustrate the performance profiles
from nCUBE2.

4.3. Load-balancing effects with packet-oriented structures

In order to explore the load-balancing strategy based on the packet-oriented data structure, the
initial undisturbed circulationG0 was set to be 5�0, in strong contrast with the weak strength of 0�1 in
the previous case. This excessive strength provides a faster growth of the vortex motion. The axial
wavelength was discretized into 10 filaments, each of which initially contained 40 segment markers.

Owing to Kelvin–Helmholtz instability excitation, the vortex filament is severely stretched and, in
order to preserve accuracy, the lengthened segment is consecutively bisected into two segments. This

Table II. Performance results on nCUBE2 with static data structure

Problem size Measurement p � 1 p � 2 p � 4 p � 8 p � 16 p � 32 p � 64 p � 128

10 rings Time 861 428 215 108 58 35�8 28�7 34
Speed-up 1 2�0 3�99 7�9 14�8 24�0 30�0 25�3

20 rings Time 3504 1748 872 438 223 118 71 57
Speed-up 1 2�0 4�0 7�9 15�7 29�6 49�3 61�5

32 rings Time — — 2188 1095 552 281 154 100
Speed-up 1 2�0 4�0 7�9 15�8 31�4 56�8 87�5

39 rings Time — — 3341 1675 847 432 239 157
Speed-up 1 2�0 4�0 7�9 15�8 30�9 55�9 85�1

Figure 6. Communications overlapping steps with message
pipelining

Figure 7. Time spent for sequential (————) and parallel
(————) I=O

VORTEX FILAMENT METHODS 945

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 931–951 (1997)

Figure 8. Profile with static partitioning scheme on eight-node nCUBE2

Figure 9. Profile with static partitioning scheme on 16-node nCUBE2

946 Y. L. SHIEH ET AL.

INT. J. NUMER. METHODS FLUIDS, VOL.24: 939–951 (1997) # 1997 by John Wiley & Sons, Ltd.

phenomenon can be clearly seen from Figure 10, which shows the number of segment markers on
each filament (ring), indicating the irregular segment marker growth pattern.

Since the computational loading is proportional to the number of distributed segment markers on
individual processors, it is essential to maintain an equal number of segment markers on each
processor. Figures 11 and 13 indicate the extent of load imbalance on different processors for the
eight- and 16-processor runs with static data partition. The figures show that the numbers of segment

Figure 10. Segment marker distribution on different filaments

Figure 11. Number of segment markers in eight-node
machine with static partitioning scheme

Figure 12. Number of segment markers in eight-node
machine with run time load-balancing scheme

VORTEX FILAMENT METHODS 947

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 931–951 (1997)

markers on each processor vary significantly from each other at a given iteration. In contrast, the runs
with run time load balancing by incorporating the packet-oriented scheme, shown in Figures 12 and
14, demonstrate the superiority of this method in achieving load balance.

Attention is now directed to the CPU time performance on different machines. Table III shows the
normalized accumulated CPU time on DEC ALPHA workstation cluster, IBM SP2 and nCUBE2 up
to 50 iterations. The superiority of the load balancing can be further affirmed by the results shown in
Table IV, giving the ratio of the execution times of the unbalanced�Tu� and balanced�Tb� runs. It
should be pointed out that DEC Alpha workstation clusters and IBM SP2 are not dedicated machines,
so the advantage of run time load balancing on these machines, though favourable, is obscured by the
non-dedicated environment.

The maximum performance improvement of 2�6 times over the static scheme was achieved using
nCUBE2, which is a dedicated environment. The difference in speed-up can be attributed to how
evenly the filament segment markers were distributed among the processors. This might be due to the
fact that the newly generated segment markers, owing to the stretching of the vortex filament, cannot
be divided evenly among the processors in the form of packets with a finite number of segment
markers in them.

In order to examine the scalability of the present scheme, focus is directed on the CPU time history
of the nCUBE2 runs, which is a dedicated machine, shown in Figures 15 and 16. The advantages of
load balancing can be demonstrated via the CPU time history, which again indicates the superior
performance of the load-balancing scheme over the static partitioning scheme. As was indicated by
the evenly distributed segment markers (Figures 12 and 14), good scalability of the scheme is
achieved.

Finally, examples of performance profiles are shown in Figures 17 and 18, indicating the
percentage of computation time spent with each processor. A profile of the unbalanced case is
presented in Figure 17, which shows that the computational times spent in different processors vary
significantly from each other. In contrast, with the dynamic packet-oriented data structure support a
much more balanced performance profile, shown in Figure 18, is obtained on each processor.

Figure 13. Number of segment-markers in 16-node machine
with static partitioning scheme

Figure 14. Number of segment markers in 16-node machine
with run time load-balancing scheme

948 Y. L. SHIEH ET AL.

INT. J. NUMER. METHODS FLUIDS, VOL.24: 939–951 (1997) # 1997 by John Wiley & Sons, Ltd.

5. CONCLUSIONS

A circular, inviscid, spatially periodic jet flow subjected to axial perturbations was simulated by the
vortex filament method on parallel machines with distributed memory. This parallel experiment was
conducted using the SPMD (single-programme multiple-data) programming model on nCUBE2,
DEC Alpha workstation clusters and IBM SP2.

For a three-dimensionally evolving jet it was observed that the concentrated vortex rings due to
Kelvin–Helmholtz instability revolve around each other, a phenomenon similar to the vortex roll-up

Table III. Normalized accumulated execution time without and with load-balancing scheme at 50 iterations

Number of DEC 3000=500 SP2 9076 nCUBE2
processors

Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced

4 0�131 0�085 0�172 0�095 1�220 0�734
8 0�138 0�089 0�121 0�093 1 0�377

16 0�094 0�039 0�484 0�210

Table IV. Accumulated execution time ratio witout and with load-
balancing scheme,Iu=Ib, at 50 iterations

Number of
processors

DEC 3000=500 SP2 9076 nCUBE2

4 1�534 1 792 1�664
8 1�547 1�311 2�647

16 2�379 2�307

Figure 15. CPU time on nCUBE2 with static data
partitioning

Figure 16. CPU time on nCUBE2 with run time load
balancing

VORTEX FILAMENT METHODS 949

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 931–951 (1997)

observed in mixing layers or shear layers. The absence of axial direction vorticity development was
attributed to the lack of azimuthal perturbations imposed on the field.

The implementation of vortex filament methods with adaptive data structure on parallel machines
is accomplished through a packet-oriented data structure to support the dynamically growing data
structure, i.e. the increase in filament segments due to vortex stretching, with non-rectangular index

Figure 17. Profile of performance on eight-node nCUBE2 with static data partitioning

Figure 18. Profile of performance on eight-node nCUBE2 with run time load balancing

950 Y. L. SHIEH ET AL.

INT. J. NUMER. METHODS FLUIDS, VOL.24: 939–951 (1997) # 1997 by John Wiley & Sons, Ltd.

sets. The number of elements of a packet grows with the data and in the present construction the
packet was automatically split if the number of elements in the packet was above a present bound.
Packets were moved around different processors to maintain the balance of computational loads
among processors. Computational results indicate that the load-balancing scheme performs much
better than the static data-partitioning scheme. It is concluded that the run time load-balancing
scheme is preferred in computations where the computational load is changing dynamically.

ACKNOWLEDGEMENTS

The work documented herein was supported by the National Science Council of Taiwan under grant
NSC-85-2212-E-007-057 which the authors gratefully acknowledge. Gratitude is also expressed to
the National Centre for High Performance Computing, Taiwan for providing access to its 8-node Dec
Alpha workstation clusters and 32-node IBM SP2, and to San Diego Supercomputing Centre for
providing access to its 128-node nCUBE2.

REFERENCES

1. G. K. Batchelor and A. E. Gill, ‘Analysis of the stability of axisymmetric jets’,J. Fluid Mech., 14, 529 (1962).
2. A. Leonard, ‘Computing three-dimensional incompressible flows with vortex elements’,Ann. Rev. Fluid Mech., 17, 523

(1985).
3. J. E. Martin and E. Meiburg, ‘Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and

azimuthal perturbations’,J. Fluid Mech., 230, 271 (1991).
4. J. A. Sethian, J.-P. Brunet, A. Greenberg and J. P. Mesirov, ‘Computing turbulent flow in complex geometries on a

massively parallel computer’,Proc. Supercomputing ’91, Albuquerque, NM, ACM, November 1991, pp. 230–241.
5. D. J. Doorly and M. Hilka, ‘3D point vortex methods for parallel flow computations,’Proc. Sixth SIAM Conf. on Parallel

Processing for Scientific Computing, SIAM, Philadelphia, PA, 1993, pp. 35–39.
6. Y. L. Shieh, J. K. Lee, J. H. Tsai and C. A. Lin, ‘Computations of three-dimensionally evolving jets with vortex methods

on parallel machine with distributed memory’,Parallel CFD: New Algorithms and Applications, Ed. A. Eceret al. Elsevier
Science B.V., 1995, pp. 119–126.

7. O. M. Kino and A. F. Ghoniem, ‘Numerical study of a three-dimensional vortex method’,J. Comput. Phys., 86, 75 (1990).
8. W. T. Ashurst and E. Meiburg, ‘Three-dimensional shear layers via vortex dynamics’,J. Fluid MEch., 189, 87 (1988).
9. J. K. Lee and D. Gannon, ‘Object-oriented parallel programming: experiments and results’,Proc. Supercomputing ’91,

Albuquerque, NM, ACM, November 1991, pp. 273–282.
10. S. X. Yang, J. K. Lee, S. P. Narayana and D. Gannon, ‘Programming an astrophysics application in an object-oriented

parallel language’,Proc. Scalable High Performance Computing Conf., Williamsburg, Virgina, June, IEEE Computer
Society, 1992, pp. 236–239.

VORTEX FILAMENT METHODS 951

1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 931–951 (1997)

